隨著塑料加工與改性技術不斷提高,應用領域迅速擴展。不同應用領域對塑料表面裝飾、材料保護、改善粘接等性能要求日益增多,但各種塑料材料結構與組分不同,相應的表面性能也有明顯差異。適應不同應用的各種表面處理技術與產品應運而生。
適應塑料表面處
理的不同需要,已有多種處理技術開發出來。常用的技術有:溶劑清洗(脫脂)、電暈處理、短波紫外光輻射處理、砂紙處理、噴沙處理、等離子蝕刻、化學蝕刻、加熱處理等。針對不同材料,常常需要選擇不同的處理方法。
表面處理方法的選用
由于大部分塑料的表面能低,許多處理方法,如裝飾、印刷、噴涂等都不能直接適用,而需要首先進行表面處理。塑料與各種不同材料的粘接性是表面處理需要解決的一個關鍵問題。一般來說,塑料粘接性能與材料結構及組分有關。
結構影響
PP和PE等聚烯烴材料,表面能很低,通常只有30-34達因。要實現良好的粘接,一般要求表面能不低于40達因。粘接試驗表明,PE在等離子處理后粘接強度可提高10倍;經過鉻酸處理后,粘接性能約可提高5倍。經過同樣處理,PP在離子化處理后粘接強度約會提高200倍,而在鉻酸處理后則會提高600倍。
為什么鉻酸對PP的處理效果如此顯著,而對PE則不然?這是因為PP鏈段上每個碳原子都有一個甲基(-CH3)。甲基在經過氧離子化或鉻酸處理后極易被羧基氧化。而且,即使只有很少的甲基被氧化,PP的粘接性能與極性也會因為羧基的存在而顯著改善。而PE則沒有這一基團??梢钥闯?,聚合物的化學結構是進行表面處理時必須考慮的一個重要因素。
組分影響
對各種配混料或共聚物而言,材料組分同樣會影響表面處理方法的選用。例如氟聚合物及其共聚物的表面能比聚烯烴還低,典型范圍為18-26達因。對于高氟含量樹脂如PTFE,經過環烷酸鈉蝕刻后粘接性能提高10倍,而經過氧或氬等離子處理后只會提高3倍。PE的趨勢則與之恰恰相反。
然而,氟樹脂與PE的共聚物經等離子處理或環烷酸鈉處理后粘接性能增加都為10倍??梢钥闯?,等離子處理更多與PE發生作用,而環烷酸鈉處理則更主要與氟樹脂發生作用。由此可以看出,通過不同材料的共聚可以改善材料的處理性能。對于不同組分的共聚物,也需要根據材料的特點選擇相應的處理方法。
選用技巧
不同的處理方法對不同聚合物結構與組分各有影響,因此對表面處理方法的選擇也應基于材料的結構與組分進行。
對于低表面能塑料(《35達因),主要靠經驗選取。而高表面能塑料,由于本身具有良好的粘接性,因而幾乎每一種處理方法都是適用的,可重點根據使用的便利性選取。
一般說,塑料的表面能越低,需要的處理越多。但是,有些聚合物具有較低的表面能,也可以直接用溶劑粘接,如ABS、PC、PS、AC和PVC等。事實上,AC之所以可以粘接是因為許多丙烯酸粘合劑自身即具有溶劑作用。而對于那些抗溶劑材料,如POM、PPO、PPS以及其他含有苯環的聚合物,通常需要表面氧化處理或打毛。對于粘接更困難的材料如聚胺和聚亞胺通常需要表面蝕刻處理才能粘接。
對于具有極性的塑料,如聚酯、環氧、聚氨酯、聚胺等,表面處理的方法也有不同要求。一般來說,極性越小,需要的處理也越少。在這些材料中,聚酯和環氧極性最強,需在表面打毛后粘接。剛性聚氨酯極性不高,通常用聚氨酯膠粘劑即可粘接,但需要用環氧進行表面處理。聚胺是其中極性最小的一種,不需處理即可粘接。
對于實際的處理過程,通常還需要考慮加工的經濟性,使之更好地符合實際加工需要。通常涉及到的各種過程參數,如加工時間、溫度、暴露程度、干燥條件等都需要仔細考慮。
在選擇處理方法時,需要綜合考慮相應材料的化學特性、聚合物鏈段結構以及應用領域的特殊要求。高可靠的粘接通常需要更多的表面處理。
表面處理應用技術
隨著制造商對制品質量要求越來越高,改進工作環境、提高工作效率與處理可靠性的配合技術與材料不斷開發出來,并擴展了其市場應用。
熱分子粘接加工技術
FTS公司是制造塑料噴涂前處理設備的專業公司。該公司開發出一種熱分子粘接加工技術(ATMAP),可有效改善材料的粘接性能,提高產品質量,并具有良好的環境友好性。
ATMAP技術的實現,是通過采用CIRQUAL燃燒器實現的。ATMAP加工主要是在烯烴基塑料制件的表面嫁接一層化學偶聯劑改善粘接性能。CIRQUAL燃燒器提供的燃燒火焰是偶聯劑在塑件表面擴散的唯一動力。該燃燒器為輕型鋁質結構,可以快速進行維護與操作,尤其適合自動處理使用。
該產品主要適用于需要進行噴涂、粘接、裝飾、層合、印刷或需要用膠帶粘接材料的表面處理。據介紹,如今采用的其他類似工藝均無法達到ATMAP所能達到的效果。